首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1568篇
  免费   154篇
  国内免费   62篇
  2023年   11篇
  2022年   16篇
  2021年   47篇
  2020年   23篇
  2019年   40篇
  2018年   38篇
  2017年   41篇
  2016年   58篇
  2015年   67篇
  2014年   81篇
  2013年   83篇
  2012年   109篇
  2011年   103篇
  2010年   77篇
  2009年   65篇
  2008年   81篇
  2007年   93篇
  2006年   84篇
  2005年   65篇
  2004年   49篇
  2003年   56篇
  2002年   56篇
  2001年   25篇
  2000年   28篇
  1999年   32篇
  1998年   15篇
  1997年   13篇
  1996年   12篇
  1995年   10篇
  1994年   13篇
  1993年   12篇
  1992年   23篇
  1991年   23篇
  1990年   22篇
  1989年   28篇
  1988年   28篇
  1987年   16篇
  1986年   15篇
  1985年   12篇
  1984年   18篇
  1983年   11篇
  1982年   10篇
  1981年   10篇
  1980年   7篇
  1979年   10篇
  1978年   7篇
  1977年   6篇
  1976年   7篇
  1973年   7篇
  1972年   4篇
排序方式: 共有1784条查询结果,搜索用时 18 毫秒
61.
Abstract

Triplex and duplex formation of two deoxyribohexadecamers d-A-(G-A)7-G (a) and d-C-(T-C)7-T (b) have been studied by UV, CD, fluorescence, and proton NMR spectroscopy. Optical studies of a and b at dilute concentrations (μM range) yielded results similar to those seen for polymers of the same sequence, indicating that these hexadecamers have properties similar to the polymers in regard to triplex formation. The CD spectra of concentrated NMR samples (mM range) are similar to those observed at optical concentrations at both low and high pH, making possible a correlation between CD and NMR studies. In NMR spectra, two imido NH-N hydrogen bonded resonance envelopes at 12.6 and 13.7 ppm indicate that only the duplex conformation is present at pH > 7.7. Four new NH-N hydrogen-bonded resonance envelopes at 12.7, 13.5, 14.2. and 14.9 ppm are observed under acidic conditions (pH 5.6) and the two original NH-N resonances gradually disappear as the pH is lowered. Assignment of these four peaks to Watson-Crick G · C, Hoogsteen T · A. Watson-Crick A · T. and Hoogsteen C+ · G hydrogen-bonded imidos, respectively, confirm the formation of triple-stranded DNA NMR results also show that triplex is more stable than duplex at the same salt condition and that triplex melts to single strands directly without going through a duplex intermediate. However, in the melting studies, a structural change within the triple-stranded complex is evident at temperatures significantly below the major helix-to-coil transition. These studies demonstrate the feasibility of using NMR spectroscopy and oligonucleotide model compounds a and b for the study of DNA triplex formation.  相似文献   
62.
d ‐Galacturonic acid is the most abundant monosaccharide component of pectic polysaccharides that comprise a significant part of most plant cell walls. Therefore, it is potentially an important nutritional factor for Botrytis cinerea when it grows in and through plant cell walls. The d ‐galacturonic acid catabolic pathway in B. cinerea consists of three catalytic steps converting d ‐galacturonic acid to pyruvate and l ‐glyceraldehyde, involving two nonhomologous galacturonate reductase genes (Bcgar1 and Bcgar2), a galactonate dehydratase gene (Bclgd1) and a 2‐keto‐3‐deoxy‐l ‐galactonate aldolase gene (Bclga1). Knockout mutants in each step of the pathway (ΔBcgar1/ΔBcgar2, ΔBclgd1 and ΔBclga1) showed reduced virulence on Nicotiana benthamiana and Arabidopsis thaliana leaves, but not on Solanum lycopersicum leaves. The cell walls of N. benthamiana and A. thaliana leaves were shown to have a higher d ‐galacturonic acid content relative to those of S. lycopersicum. The observation that mutants displayed a reduction in virulence, especially on plants with a high d ‐galacturonic acid content in the cell walls, suggests that, in these hosts, d ‐galacturonic acid has an important role as a carbon nutrient for B. cinerea. However, additional in vitro growth assays with the knockout mutants revealed that B. cinerea growth is reduced when d ‐galacturonic acid catabolic intermediates cannot proceed through the entire pathway, even when fructose is present as the major, alternative carbon source. These data suggest that the reduced virulence of d ‐galacturonic acid catabolism‐deficient mutants on N. benthamiana and A. thaliana is not only a result of the inability of the mutants to utilize an abundant carbon source as nutrient, but also a result of the growth inhibition by catabolic intermediates.  相似文献   
63.
Nonunion of fractured bones is a common clinical problem for orthopedic surgeons. This study aimed to investigate the effects of simvastatin locally applied from calcium sulfate (CS) combined with a mesenchymal stem cell (MSC) sheet on fracture healing. In vitro, the proliferation and differentiation of rat bone marrow–derived MSCs stimulated by simvastatin were investigated. In vivo, an osteotomy model was made in rat tibia, and fractured tibias were treated with CS, CS/simvastatin, CS/MSC sheet or simvastatin-loaded CS with MSC or untreated (control). Tibias were harvested at 2 or 8 weeks and underwent real-time quantitative polymerase chain reaction, x-ray, micro-CT and histological analysis. The expression levels of bone morphogenetic protein 2, alkaline phosphatase, osteocalcin, osteoprotegerin and vascular endothelial growth factor of simvastatin-induced MSCs increased with the concentrations of the simvastatin, significantly higher than those in the MSCs group. At 2 weeks, the CS/simvastatin/MSC sheet group showed significantly higher expressions of bone morphogenetic protein 2, alkaline phosphatase, osteocalcin, osteoprotegerin and vascular endothelial growth factor, with more callus formation around the fracture site compared with the other four groups. At 8 weeks, complete bone union was obtained in the CS/simvastatin/MSC sheet group. By contrast, newly regenerated bone tissue partially bridged the gap in the CS/simvastatin group and the CS/MSC sheet group; the control and CS group showed nonunion of the tibia. These results show that both simvastatin and the MSC sheet contributed to the formation of new bone and that the tibia fracture was completely healed by transplantation of the MSC sheet with locally applied simvastatin. Such MSC sheet with locally applied simvastatin might contribute to the treatment of fractures, bone delayed unions or nonunions in clinical practice.  相似文献   
64.
Akt/protein kinase B is a pivotal component downstream of phosphatidylinositol 3-kinase (PI3K) pathway, whose activity regulates the balance between cell survival and apoptosis. Phosphorylation of Akt occurs at two key sites either at Thr308 site in the activation loop or at Ser473 site in the hydrophobic motif. The phosphorylated form of Akt (pAkt) is activated to promote cell survival. The mechanisms of pAkt dephosphorylation and how the signal transduction of Akt pathway is terminated are still largely unknown. In this study, we identified a novel protein phosphatase CSTP1(complete s transactivated protein 1), which interacts and dephosphorylates Akt specifically at Ser473 site in vivo and in vitro, blocks cell cycle progression and promotes cell apoptosis. The effects of CSTP1 on cell survival and cell cycle were abrogated by depletion of phosphatase domain of CSTP1 or by expression of a constitutively active form of Akt (S473D), suggesting Ser473 site of Akt as a primary cellular target of CSTP1. Expression profile analysis showed that CSTP1 expression is selectively down-regulated in non-invasive bladder cancer tissues and over-expression of CSTP1 suppressed the size of tumors in nude mice. Kaplan-Meier curves revealed that decreased expression of CSTP1 implicated significantly reduced recurrence-free survival in patients suffered from non-invasive bladder cancers.  相似文献   
65.
66.
Chromosome duplication and transmission into daughter cells requires the precisely orchestrated binding and release of cohesin. We found that the Drosophila histone chaperone NAP1 is required for cohesin release and sister chromatid resolution during mitosis. Genome-wide surveys revealed that NAP1 and cohesin co-localize at multiple genomic loci. Proteomic and biochemical analysis established that NAP1 associates with the full cohesin complex, but it also forms a separate complex with the cohesin subunit stromalin (SA). NAP1 binding to cohesin is cell-cycle regulated and increases during G2/M phase. This causes the dissociation of protein phosphatase 2A (PP2A) from cohesin, increased phosphorylation of SA and cohesin removal in early mitosis. PP2A depletion led to a loss of centromeric cohesion. The distinct mitotic phenotypes caused by the loss of either PP2A or NAP1, were both rescued by their concomitant depletion. We conclude that the balanced antagonism between NAP1 and PP2A controls cohesin dissociation during mitosis.  相似文献   
67.

Objective

Heart failure (HF) is one of the most serious diseases worldwide. S-propargyl-cysteine (SPRC), a novel modulator of endogenous hydrogen sulfide, is proved to be able to protect against acute myocardial ischemia. In order to produce more stable and sustainable hydrogen sulfide, we used controlled release formulation of SPRC (CR-SPRC) to elucidate possible cardioprotective effects on HF rats and investigate involved mechanisms on apoptosis and oxidation.

Methods

Left coronary artery was occluded to induce HF model of rat. The survival rats were randomly divided into 7 groups after 24 hours and treated with drugs for 6 weeks. Echocardiographic indexes were recorded to determine cardiac function. TTC staining was performed to determine infarct size. Plasmatic level of hydrogen sulfide was detected by modified sulfide electrode. Activity of enzyme and expression of protein were determined by colorimetry and Western blot, respectively.

Results

The cardioprotective effects of CR-SPRC on HF rats were confirmed by significant reduction of infarct size and improvement of cardiac function, with better effects compared to normal SPRC. CR-SPRC modulated antioxidant defenses by preserving levels of GSH, CAT and SOD and reducing CK leakage. In addition, CR-SPRC elevated ratio of Bcl-2/Bax and inhibited activity of caspases to protect against myocardial apoptosis. The cardioprotective effects of CR-SPRC were mediated by hydrogen sulfide.

Conclusions

All experiment data indicated cardioprotective effects of CR-SPRC on HF rats. More importantly, CR-SPRC exerted better effects than normal SPRC in all respects, providing a new perspective on hydrogen sulfide-mediated drug therapy.  相似文献   
68.

Background

A number of studies evaluated the association of intracellular adhesion molecule-1 (ICAM-1) K469E (rs5498, A/G) gene polymorphism with diabetic microvascular complications (DMI) including diabetic nephropathy (DN) and diabetic retinopathy (DR) in different populations. However, the results of individual studies remain conflicting.

Methods

A comprehensive search was conducted to identify all eligible studies of the above-mentioned associations. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) were assessed using the fixed or random effect model.

Results

Seven studies involving 3411 subjects were included. Overall, the meta-analysis showed a significant association of the A allele with increased risk of DMI susceptibility in a recessive model (OR = 1.37, 95% CI 1.04–1.80, P = 0.02). In the subgroup analysis stratified by ethnicity, significant association was found in Asians but not in Caucasians (OR = 1.78, 95% CI 1.13–2.81, P = 0.01; OR = 1.10, 95% CI 0.79–1.54, P = 0.58, respectively). Moreover, it showed a significant association between the A allele and risk of DN in a recessive model (OR = 1.25, 95% CI 1.02–1.55, P = 0.04).

Conclusions

This meta-analysis suggested that the K469E polymorphism in ICAM-1 gene might affect individual susceptibility to DMI and showed a discrepancy in different ethnicities. Further investigations are needed to validate the association.  相似文献   
69.
70.
Reorganization of the actin cytoskeleton is responsible for dynamic regulation of endothelial cell (EC) barrier function. Circumferential actin bundles (CAB) promote formation of linear adherens junctions (AJs) and tightening of EC junctions, whereas formation of radial stress fibers (RSF) connected to punctate AJs occurs during junction remodeling. The small GTPase Rap1 induces CAB formation to potentiate EC junctions; however, the mechanism underlying Rap1-induced CAB formation remains unknown. Here, we show that myotonic dystrophy kinase–related CDC42-binding kinase (MRCK)-mediated activation of non-muscle myosin II (NM-II) at cell–cell contacts is essential for Rap1-induced CAB formation. Our data suggest that Rap1 induces FGD5-dependent Cdc42 activation at cell–cell junctions to locally activate the NM-II through MRCK, thereby inducing CAB formation. We further reveal that Rap1 suppresses the NM-II activity stimulated by the Rho–ROCK pathway, leading to dissolution of RSF. These findings imply that Rap1 potentiates EC junctions by spatially controlling NM-II activity through activation of the Cdc42–MRCK pathway and suppression of the Rho–ROCK pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号